Intersectional Environmental Justice and **Population Health** Inequalities: A Novel Approach

CAMILA H. Alvarez

ASSISTANT PROFESSOR OF SOCIOLOGY

UNIVERSITY OF CALIFORNIA, MERCED

Acknowledgements

Clare Rosenfeld Evans (co-author) is an assistant professor in the department of sociology at the University of Oregon.

The farming communities of the Central Valley breathe some of the worst air in the nation

FI SHARE YTWEET

As we reported earlier this week, the World Health Organization released its latest <u>report</u> measuring air quality in cities all over the world. The report specifically looks at the concentration of particles measuring 10 micrometers or less – those likely to get into the blood stream and cause disease.

Of the 375 U.S. cities included in the list, only 36 of them exceed the WHO's air quality standard of 20 micrograms of particulates per cubic meter, on average. That's pretty good. But of the ten worst performing cities, five are located in California's Central Valley.

So what's going on here?

Screenshot from "Why Does California's Central Valley Have Such Bad Air Pollution?" by Nate Berg published in CityLab on 28 Sept 2011

Conceptual Frameworks

Research Question

ARE THERE INTERACTION EFFECTS (OR OVERLAPPING NEIGHBORHOOD DEMOGRAPHICS) FOR ENVIRONMENTAL HEALTH RISK ACROSS CENSUS TRACTS IN THE UNITED STATES?

Unit of analysis

Unit of analysis is census tract

Using census tract as proxy of neighborhood or community

Sample=72,103 census tracts from the United States

)ata

Dependent Variable: 2014 annual estimated cancer risk from air toxics (EPA's National Air Toxics Assessment)

Neighborhood Demographic Data comes from U.S. Census' American **Community Survey and USDA's 2013** Rural-Urban Continuum Codes.

Analytical Strategy

Figure 1. Comparison of multilevel model structures.

Notes: Arrows indicate hierarchical, nested structure of data. For instance, in conventional multilevel models, multiple census tracts (level 1) are nested within each county, and counties (level 2) are nested within each state (level 3).

4*3*3*3*2=216 total intersectional strata

C.H. ALVAREZ FEB. 2021

	1st digit		2nd digit		3rd digit		4th digit		5th digit
Stratum ID	Racial and ethnic composition	Female-Headed Household		Educational Attainment			Income		Urbanicity
	Below the median % Black and below the median % 1 Latinx residents	1	Lowest tercile of percent female- headed household	1	Lowest tercile of percent some college or up	1	Lowest tercile of median household income	0	Non-metro
:	A <i>bove</i> the median % Black and <i>below</i> the median % 2 Latinx residents	2	Middle tercile of percent female- headed household	2	Middle tercile of percent some college or up	2	Middle tercile of median household income	1	Metro
:	Below the median % Black and <i>above</i> the median % 3 Latinx residents	3	Highest tercile of percent female- headed household	3	Highest tercile of percent some college or up	3	Highest tercile of median household income		
	<i>Above</i> the median % Black and <i>above</i> the median % 4 Latinx residents								

Stratum ID: 23331

- 2 upper-tile % Black & % lower-tile Latinx residents
- 3 upper tertile % of single female-headed household
- 3 upper tertile % of % some college and up
- 3 upper tertile of median household income
- 1 -- metro

Considerable amount of interaction effects across strata.

(A) Inclusive of outlier census tracts (Model 1B).

Null model VPC = 18.33%

The PCV between the null model and main effects model 85.4%. This suggests that approximately 15% of the between-stratum variance may be attributed to interaction effects Figure 3: Up-close of high- and low-risk air pollution exposure by stratum ranking

Considerable amount of interaction effects across strata.

Figure 2: Expected values of total air pollution by stratum ranking

(A) Inclusive of outlier census tracts (Model 1B).

Considerable amount of interaction effects across strata.

Figure 3: Up-close of high- and low-risk air pollution exposure by stratum ranking

Conclusion

We find evidence of significant, intersectional inequalities in environmental health risk from air toxics between strata of census tracts.

Our approach reconceptualizes how environmental justice, intersectionality theory, and social determinants of health can inform each other and understand social and environmental inequalities.

	Mean	SD	Min	Max	Median
Estimated Air Toxics Cancer Risk (All Tracts)	31.65	12.92	6.17	1505.12	31.00
Race/Ethnicity by Tract					
% White, not Latinx	63.22	30.16	0	100.00	72.69
% Latinx	15.65	21.16	0	100.00	6.61
% Black, not Latinx	13.38	21.93	0	100.00	3.74
% Female-Headed Households	13.64	8.71	0	87.28	11.53
% Residents with Some College or More	57.26	17.82	4.74	100.00	56.26
Median Household Income (in \$1,000s)	57.23	28.49	2.50	250.00	51.00
Metro (binary)	.8338	.3723	0	1	1
% Renters	36.30	22.70	0	100	31.15
% Unemployed	9.76	6.01	0	100	8.44
% Housing units built after 1970	55.49	28.77	0	100.00	57.21
Median Housing Value (in \$1,000s) (n=71,375)	219.10	173.75	10.000	100.00	162.50
% Workers in Manufacturing (n=72,102)	10.45	6.91	0	71.77	9.13
Median Age in Tract	38.75	7.62	11.50	84.30	38.80

 Table 1. Descriptive Statistics of Census Tracts.

Note: n=72,103 unless otherwise stated. Percent unemployed was calculated as the number of civilians (aged 16 years and older) in the labor force who reported being unemployed divided by the total population in the tract (aged 16 years and older) who are in the labor force. Median housing value is of owner-occupied housing units in tens of thousands of dollars. Percent of workers in manufacturing is the number of civilians (aged 16 years and older) employed in manufacturing divided by the total number of civilians (aged 16 years and older) employed in manufacturing divided by the total number of civilians (aged 16 years and older) who are employed.

Table 2. Results from Multilevel Linear Regression Models.

	Model 1A (Null)			Mc	Model 1B (Main Effects)				Model 1C (Main Effects+Controls)				
FIXED EFFECTS	Est	95%	6 CI	Р	Est 95% CI		Р	Est	95% CI		P		
Intercept	29.70	28.86	30.51	< 0.001	21.99	20.88	23.04	< 0.001	23.41	22.29	24.52	< 0.001	
Racialization													
Low% Black, Low% Latinx (ref)	_	—	_	_	—	—	_	_	_	—	—	—	
High% Black, Low% Latinx					8.29	7.34	9.25	<0.001	7.95	6.88	9.00	<0.001	
Low% Black, High% Latinx					3.30	2.33	4.22	<0.001	2.41	1.37	3.38	<0.001	
High% Black, High% Latinx					6.85	5.87	7.89	<0.001	5.76	4.75	6.84	<0.001	
Female Headed Household													
Low Tercile (ref)	—	—	—	—									
Midale Tercile					1.02	0.10	1.85	0.014	1.13	0.25	2.03	0.006	
Figh Tercile					2.13	1.92	3.60	<0.001	2.00	1.75	3.01	<0.001	
Low Tercile (ref)													
Middle Tercile	_	_	_	_	_1 95	_2 70	_1 09	<0.001	_2 30	-3.20	_1 58	<0.001	
High Tercile					-1.55	-2.75	-0.77	0.002	-3.21	-4 12	-2.27	<0.001	
Median Household Income					1.07	2.00	0.11	0.002	0.21	1.12	2.21	-0.001	
Low Tercile (ref)	_	_	_	_	_	_	_	_	_	_	_	_	
Middle Tercile					-0.46	-1.26	0.41	0.145	-0.10	-0.88	0.77	0.401	
High Tercile					-0.74	-1.60	0.16	0.069	-0.64	-1.57	0.32	0.095	
Metro					6.45	5.72	7.16	<0.001	6.04	5.25	6.76	<0.001	
CONTROLS													
Median Age*									-0.03	-0.05	-0.02	<0.001	
Housing built after 1970 (%)*									0.03	0.02	0.03	<0.001	
Median Housing Value* [‡]									0.06	0.05	0.07	<0.001	
Manufacturing (%)*									-0.05	-0.06	-0.03	<0.001	
Renters (%)*									0.04	0.03	0.04	<0.001	
Unemployment (%)*									0.01	-0.01	0.03	0.186	
RANDOM EFFECTS	Est 95% CI			Est	95% CI			Est 95%		6 CI			
Stratum Var (σ_{u0}^2)	32.61	26.36	39.92		4.76	3.48	6.41		4.61	3.28	6.30		
Census Tract Var (σ_{e0}^2)	145.25	143.74	146.74		145.30	143.84	146.81		144.31	142.77	145.81		
VPC (%)	18.33	15.50	21.39		3.17	2.36	4.19		3.10	2.25	4.14		
PCV (%) **					85.40				85.86				
N	72,103				72,103			<u>,</u>	71,374				

Notes: * Variable is mean-centered. ** Proportional Change in Stratum-Level Variance relative to model 1A (null model). ‡In tens of thousands. Due to missing data in ACS on median housing value (n=728) and percent manufacturing (n=1), the total number of census tracts in Model 1C was reduced to 71,374.

	County	Pogion	T	Stratum	Population	Est Cancer Dick	Fueles ation for Flourted Diels *	
State	County	Region	I ract #		Size	RISK	Explanation for Elevated Risk *	
CO	Jefferson	8	8059010902	33211	2,310	525.56	Elevated estimated risk due to	
							etnylene oxide emissions from	
							in Lakewood CO	
11	DuPage	5	170/20/5011	40004	2 0 2 0	262.44	These two consus tracts are	
	DuFage	5	17043043011	42321	3,030	203.44	contiguous. Elevated estimated risk	
IL.	Duraye	5	17043043902	11551	3,411	201.01	due to ethylene oxide emissions	
							from the Sterigenics facility located	
							in Willowbrook II	
A	St. Charles	6	22089060100	23131	1,937	808.72	This cluster of twelve contiguous	
A	St. Charles	6	22089062500	23121	2,988	273.27	census tracts spans a section of	
A	St. Charles	6	22089062700	23111	4,753	284.51	the Mississippi River in two	
LA	St. John the Baptist	6	22095070100	22231	2,685	303.01	counties in Louisiana: St. Charles	
A	St. John the Baptist	6	22095070300	22221	6,258	296.31	and St. John the Baptist. The area	
A	St. John the Baptist	6	22095070400	22231	4,381	286.54	is part of the notorious "Cancer	
A	St. John the Baptist	6	22095070500	43121	6,229	329.27	Alley." Elevated estimated risk due	
A	St. John the Baptist	6	22095070700	23121	4,348	511.32	to chloroprene and ethylene oxide	
A	St. John the Baptist	6	22095070800	23121	2,537	1,505.12	emissions. The La Place Chemical	
A	St. John the Baptist	6	22095070900	23111	3,115	616.62	Plant operated by Denke	
A	St. John the Baptist	6	22095071000	23111	2,840	490.28	Performance Elastomer (located in	
A	St. John the Baptist	6	22095071100	23121	3,398	363.19	tract #22095070800) has been	
							chloropropo omissiono. The Union	
							Carbide facility and the Evonik	
							Materials facility have been	
							identified as the major sources of	
							ethylene oxide emissions	
PA	Lehigh	3	42077000101	43221	3,661	346.52	These three census tracts are	
PA	Lehigh	3	42077005902	42221	1,571	596.46	contiguous. Elevated estimated risk	
PA	Lehigh	3	42077009200	31221	3,768	256.05	due to ethylene oxide emissions	
	Ū						from the B Braun Medical Inc	
							facility, located in Allentown, PA.	
ΓX	Harris	6	48201343100	42231	4,629	348.20	These two census tracts are	
TΧ	Harris	6	48201343200	41331	4,944	296.18	contiguous and located in Houston,	
							IX. Elevated estimated risk due to	
							etnylene oxide emissions. East	
							Houston is well known as the	
							location of a variety of polititers in	
							close proximity to fenceline	
							neighborhoods.	
TX	Jefferson	6	48245010902	31331	4,592	274.52	Elevated estimated risk due to	
							ethylene oxide emissions from the	
							Huntsman Corporation's Port	
							Neches facility.	
WV	Kanawha	3	54039013400	22211	2,222	366.66	Elevated estimated risk due to	
							ethylene oxide emissions from the	
							Union Carbide facility.	

Table 3. Details for twenty-two "outlier" census tracts with estimated cancer risk \geq 250 cases per million.

C.H. ALVAREZ FEB. 2021

Intersectional strata of tracts

Strata sample size of census tracts strata	Frequency of strata N	(%)
100 or more	117	54.17%
50 or more	143	66.20%
30 or more	162	75%
20 or more	169	78.24%
10 or more	185	85.65%
5 or more	194	89.84%
1 or more	216	100%

Out of 216 possible strata

Analytical Strategy: EIM modeling

Interactions grow linearly instead of geometrically.

$$y_{ij} = \beta \delta_j + u_{0j} + e_{0ij}$$
$$u_{0j} \sim N(0, \sigma_u^2)$$
$$e_{0ij} \sim N(0, \sigma_e^2)$$

Model parsimony is kept by having the estimate residual give the effect of the interaction.

MAIDHA has shown through stimulation that the model is robust to different sample sizes (Evans 2015; Evans et al 2018; Bell, Holman & Jones 2019).

Variance

Variance Partition Coefficient (VPC)
VPC =
$$\frac{\sigma_u^2}{\sigma_u^2 + \sigma_e^2} \times 100\%$$

Proportional Change in Variance(PCV) $PCV = \frac{\sigma_{u, Null model}^2 - \sigma_{u, Non null model}^2}{\sigma_{u, null model}^2} \times 100\%$